
 

D3.4.2 – Middleware and web server 

for accessing Europeana 

 

This deliverable is software. 

 

 

 

 

co-funded by the European Union 

The project is co-funded by the European Union, through the eContentplus programme 

http://ec.europa.eu/econtentplus 

   

 

EuropeanaConnect is coordinated by the Austrian National Library 



 

 

 

 

 

ECP-2008-DILI-528001 

 

 

EuropeanaConnect 

 

 

 

D3.4.2 – Middleware and web server for accessing Europeana 

 

 

 

 

Deliverable number/name D 3.4.2 

Dissemination level Public 

Delivery date 2010-07-31 

Status 1.0 

Author(s) Dennis Heinen, Tobias Hesselmann, OFFIS 

 

 

eContentplus 

This project is funded under the eContentplus programme,  

a multiannual Community programme to make digital content in Europe more accessible, usable and 

exploitable. 

   

 

EuropeanaConnect is coordinated by the Austrian National Library 



EuropeanaConnect Deliverable D3.4.2 – Middleware and web server for accessing Europeana 

 

Summary 

This deliverable summarizes the implementation of a middleware and web server for mobile 

access to Europeana as part of work package 3.4. We start with the presentation of the approach 

used to derive the user requirements for this deliverable. We then describe the human-centred 

design process, which is used for the development of the Europeana mobile client. After the 

discussion of concepts and designs for mobile device recognition, we present the related 

implementation and describe its integration into the Europeana portal. We continue with designs 

for mobile optimized presentations. Based on that, we will then present the actual implementation 

of the mobile user interfaces, followed by the implementation details. We also give an outlook for 

the future by suggesting further improvements to ensure the developments of task 3.4 can keep 

up with the technological developments in the next years. 
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1 Introduction 

The overall goal of EuropeanaConnect Task 3.4 is to make the rich cultural content of Europeana 

available to a broad spectrum of users in mobile scenarios. With the development of mobile 

access channels for Europeana, we enable users to access the material inside the Europeana 

database and benefit from the cultural content inside Europeana using their mobile clients when 

the use of stationary PCs is either impossible or unwanted. For reading convenience, we will refer 

to the Europeana mobile client application as eMobile in the following. 

1.1 Motivation 

The Europeana portal offers a state-of-the-art web interface for stationary desktop PCs. Users 

can access the contents of Europeana using their web browsers and explore the rich cultural 

works using an intuitive user interface.  

Nevertheless, due to the fact that more and more users are accessing the web on the go with 

their mobile devices, it is necessary to optimize traditional websites for the use of mobile devices. 

This statement is backed by a recent study of (Gartner Inc., 2010), stating that by 2013, mobile 

phones will overtake PCs as the most common Web access device worldwide. 

As the study points out, mobile users need to be treated differently than Desktop PC users for a 

number of reasons: Typically, the user experience on a mobile device is negatively influenced by 

  Figure 1. Europeana portal on an iPhone Figure 2. Search results on an iPhone 
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a number of factors, including the limited capability of mobile devices when it comes to screen 

size and the missing support for state-of-the-art technologies, such as JavaScript or AJAX, in 

mobile browsers. For example, when viewing the Europeana Portal on a mobile device, the 

available screen size is not efficiently used, as the ordinary web site is naturally optimized for 

access by standard Desktop browsers (see Figure 1). Also, the navigation between elements 

(e.g. language selection and search box) is impractical, requiring a lot of zooming and scrolling on 

the mobile device (Figure 2). 

With eMobile, we provide a service tailored to the needs of users in mobile environments, taking 

into account the specific capabilities of mobile browsers and the screen size of mobile devices. 

The remainder of this document is structured as follows: In chapter 2, we will briefly describe our 

approach for the developments of Task 3.4 and explain the used process model. In chapter 3, we 

will sum up the results from our requirements analysis in subtask 3.4.1 and outline the identified 

use cases for this deliverable. Chapter 4 contains the actual design and implementation 

documentation. We conclude with a summary and present the next steps in the development of 

the mobile client in chapter 5. 

2 Process Model 

In this chapter we describe the approach used to define the requirements for the development of 

eMobile, the mobile access client for Europeana.  

Human-Centred Design process 

The design of an interactive system, in this case a mobile web application, is no trivial task. To 

ensure the development of a highly usable system that is efficient, effective and satisfying, which 

are the three main criteria for usability as defined in ISO 9241-11 (ISO, 1998), the application 

design needs to follow a defined process model. The document at hand is the result of the 

application of the HCD process, as specified in ISO 13407 (ISO, 1999). It is particularly well 

suited for the design of interactive systems, as it incorporates user feedback in all stages of 

development, which can be considered one of the most crucial aspects in software engineering. 
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Figure 3. Human-Centred Design Process 

The HCD process is illustrated in Figure 3. It consists of four steps: 

1. Specify Context of Use. In this step, the stakeholders of the product are identified and the 

user environment is described. This step gives developers a “big picture” of the product 

and its users. 

2. Specify requirements. The specification of requirements is the most essential step to 

create highly usable products. In this step, the goals of the product’s users will be 

gathered and described in a standardized format. 

3. Produce design solutions. Based on the first steps, the development of the actual software 

version is carried out. 

4. Evaluate design. A crucial step to measure the usability of a product and to improve the 

product usability-wise is to perform evaluations on the product, which are conducted in 

this step.  

The process is then repeated until the developed system satisfies the formerly specified 

requirements. In Deliverable 3.4.1, we have specified the Context of Use and the Requirements 

for a mobile client for Europeana (OFFIS Institute for Information Technology, 2009). The actual 

design and implementation documentation of the mobile client, which builds on the requirements 

defined before, is split into two documents: In this document, Deliverable 3.4.2, we describe the 

basic functionality of the mobile client, including the Middleware and Web Server functionality, 

which provides basic search functions to mobile users. In Deliverable 3.4.3., we report on 

functions for rich mobile devices and smartphones, including location-aware searching of 

Europeana content. Deliverable 3.4.4 will conclude with an evaluation of the requirements 

themselves and the developed mobile clients, according to the last section of the HCD process. 
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3 Requirements Definition 

This chapter sums up the results from our requirements analysis in task 3.4.1 and outlines the 

identified use cases for task 3.4.2. 

3.1 Summary of Mobile Operating Systems / Mobile Browsers Analysis 

Since smartphones are becoming more and more important when it comes to mobile internet 

access, we will focus on the development of a mobile access channel for Europeana that meets 

the needs of mobile users with that device class. Because the development of the mobile market 

is constantly changing, it is important to focus on the layout engines used in modern mobile 

browsers. By adhering to established web standards (HTML/CSS) it is possible to create a user 

experience that is independent of the used operating system and mobile browser. To accomplish 

this goal, the different hardware capabilities of devices need to be considered, e.g. by adapting 

the size of a result list to the available screen area and resolution. 

3.2 Results from User Survey 

The survey – conducted with senior staff members from our project partner, the Royal Library of 

Denmark, with experience in mobile access or human factors – gives an interesting picture about 

the image of Europeana and the features users demand of a mobile client for Europeana. The 

participants gave some comments concerning the improvement of some aspects of the current 

Europeana web portal, particularly when it comes to quality of the search results, purpose of the 

web site and speed. Thus, for a mobile client, an easy operation was explicitly demanded by 

some of the participants. The added value of a mobile client was not obvious to the users at first 

sight, although they were able to identify numerous scenarios for a mobile client, including 

research, educational and fun use of Europeana in mobile context. It seems their opinions may 

be biased by the look and feel of the Europeana portal, which is not optimized for mobile devices 

at the current time. The most important features identified were the performance of the mobile 

application and the support of the different capabilities of mobile devices, e. g. different 

resolutions of the used displays. The users were particularly interested in social networks, good 

search results and, first of all, a simple, fast and interactive mobile interface to Europeana. 

3.3 Functional Requirements / Use Cases 

In Deliverable 3.4.1, we have formalized the functional requirements in use cases, which are 

summarized in the following (see (OFFIS Institute for Information Technology, 2009) for a more 

detailed version). 

UC 1.1 Simple search 

The system shall allow the user to do a simple keyword search 

UC 2.1 Visualization of Search Results in text-only List 

The system shall allow the user to visualize results in a text-only perspective 

UC 2.2 Visualization of Search Results in gallery list 

The system shall allow the user to visualize results in an image-only gallery perspective 

UC 2.3 Visualization of Search Results in Mixed list 

The system shall allow the user to visualize results in a mixed image/text perspective 

UC 3 Visualize details of an item in the search results 

The system should allow the user visualize details of a selected item in the search results 
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3.4 Non-functional Requirements 

In contrast to functional requirements, non-functional requirements do not make a statement 

about the behaviour of the system, but about its quality. They are an essential part of the 

requirements definition, especially in the context of larger projects as Europeana, in which 

thousands of users are potentially working with the system each day. 

The following requirements are applicable to Subtask 3.4.2. A full list and a description of each 

requirement can be found in D3.4.1 as part of the user requirements definition. 

Usability 

The usability of the mobile client is a critical aspect that demands special attention. According to 

DIN EN ISO 9241-11, usability is defined as the “extent to which a product can be used by 

specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a 

specified context of use.”  

According to the user centred design process, we will evaluate the usability of the system in a 

user study as part of Task 3.4.4, after the release of RHINE in M15 and give recommendations 

about future improvements of the system. 

Security 

One of the most important non-functional requirements is security. Therefore, the system shall 

not store any personal information about a certain user that cannot be changed by the user 

him/herself. It shall not allow unauthorized individuals or programs access to any communication. 

Scalability 

Scalability is a critical issue for all developments in the EuropeanaConnect project. Europeana 

will become a central service for all Europeans and is therefore likely to experience heavy traffic 

from day to day. This also holds true for the mobile web client developed in this task, it thus 

needs to be made sure that eMobile will be scalable according to the increasing popularity of 

Europeana. 

Extensibility 

Extensibility is a quality of design that takes possible future advances into consideration and 

attempts to accommodate them. The system shall therefore be able to allow the addition of 

features without influencing existing system functions. The usage of SPRING as a framework, as 

recommended by the Europeana Office, assists in keeping the system flexible and extendable. 

Maintainability 

The code developed in this task needs to be maintained by external institutions, i. e. the 

Europeana Office, after the project. To ensure this, we support the development architecture 

proposed by the Europeana Office, concerning development platforms and tools, as well as 

programming language and frameworks as good as possible. 

Testability 

To ensure a proper testability of the code, we have developed unit tests for all critical parts of the 

software. Unit tests can be executed automatically to confirm the correct operation of the code 

after changing parts of the system. We have furthermore tested the operation of the system 

manually to ensure proper operation from a user centric point of view. 
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Platform Compatibility 

The system should support a wide range of mobile devices and offer optimized versions of the 

Europeana portal that suit the various mobile devices used. This is also backed by the results 

from the user survey. All users pointed out that the support of different mobile devices would be 

one of the key features of mobile access to Europeana. We have incorporated multiple 

mechanisms to support this requirement, which are described later in this document. 

Performance 

Since mobile internet connections still have to deal with lower bandwidths than regular internet 

connections, one of the main focus points for performance considerations should be the amount 

of transferred data. It shall only transfer data relevant to his/her query that makes sense in a 

mobile environment. E.g. a high resolution image should only be loaded if the user wants to view 

and actively selects it. 

3.5 Constraint Requirements 

There are also constraints in the form of technical demands that are made by the Europeana 

office. These are described in detail in the Guidelines for the use of EuropeanaLabs (Siebinga, et 

al., 2009). We address and refer to them (e.g. testing and external libraries) during the course of 

this document. 

In the following, we will describe the actual design and implementation of eMobile, which adheres 

to the requirements presented in this chapter. 

4 Design and Implementation 

The main requested feature in the user survey conducted in D3.4.1 – Catalogue of user 

requirements is to support heterogeneous mobile devices, including a presentation of search 

results and images that fits specific capabilities of the used mobile device. Similar suggestions 

are presented by the industry (see Gartner Inc., 2010), making the support of different devices a 

main objective of Task 3.4.2. 

In order to realize this feature, we have developed an Adaptive Web Client (see Figure 4), which 

1. automatically identifies whether the Europeana web site is accessed by an ordinary 

desktop PC or a mobile device; 

2. detects the capabilities and features of the accessing device and  

3. adapts the look and feel of the web site to the device in use. 

Figure 4 shows an illustration of the eMobile system architecture. At first the system detects 

whether the actual request to the Europeana web site is made from a stationary desktop PC or 

from a mobile device. If a desktop PC is used, the user is redirected to the standard Europeana 

Portal. If a mobile device is used instead, the system carries out a device identification, detecting 

the capabilities of the mobile devices and the Mobile Web Browser used. In order to overcome 

the heterogeneity and limitations of mobile devices, we have implemented an Adaptive Web 

Client, which acts as a middleware between the Mobile Device and the Europeana Database. It 

encapsulates queries made by the mobile device, forwards them to the Europeana database and 

collects the query results, which are then processed and adapted to the respective mobile device. 

We have split the Adaptive Web Client into two parts: Basic and advanced services. The basic 

search functionality covers the formulation of queries, the browsing of search results and the 
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displaying of detailed information for items inside the database, which are described in this 

chapter. The advanced services, which include location aware search functionality, are described 

in detail in Deliverable 3.4.3. 

 

Figure 4. eMobile System architecture 

In the following, we will explain the necessary concepts for the first two steps of the system, the 

identification of the accessing device and the detection of its capabilities. 

4.1 Concepts for mobile device recognition 

Basically, there are two ways of recognizing devices accessing a web site. In the client-based 

approach, JavaScript functions are executed on the accessing device. Most browsers implement 

the navigator object that can be used to query different device properties (e.g. appCodeName, 

the internal browser name or appVersion, the browser version). The device then registers itself 

as a stationary or mobile device to the server. This approach has several drawbacks, including 

the fact that many mobile browsers only offer very limited JavaScript functionality. Furthermore, 

users may deactivate JavaScript completely, rendering this approach fairly unreliable. Instead, we 

are using a server-sided technique, which relies on logic implemented on the web server side, 

making this approach independent from the used browser and device. 

Concepts for device recognition 

There are several server-sided methods that help in determining the identity of a particular device 

(Georgieva, 2007) which are outlined in the following. 

HTTP Headers 

Web browsers and servers use the HTTP protocol to transfer information on the WWW. Each 

HTTP request (see Figure 5) contains various field-value pairs in its header. The most useful 

information for device recognition is the User-Agent Header. It identifies the client device and 

contains information about the browser, operating system and sometimes hardware information. 
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Figure 5. HTTP Request/Response and Header Structure (Apache Software Foundation, 2010) 

Excerpt from an HTTP-Request header of a mobile device: 

Connection Keep-Alive 

[…] 

Accept: text/xml,application/xml,application/xhtml+xml,text/ht
ml;q=0.9,image/png,*/*;q=0.5 

Accept-Charset iso-8859-1,utf-8;q=0.7,*;q=0.7 

Accept-Encoding gzip, deflate, x-gzip, identity; q=0.9 

Accept-Language de;q=1.0,nl;q=0.5,en;q=0.5,fr;q=0.5,it;q=0.5,tr;q=0.5 

User-Agent Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 Nokia5800d-
1/50.0.005; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) 

AppleWebKit/525 (KHTML, like Gecko) Version/3.0 
BrowserNG/7.2.3 

[…] 

x-wap-profile http://nds1.nds.nokia.com/uaprof/Nokia5800d-1r100-

2G.xml  

User Agent Profile 

A mobile device usually sends a device-specific value within the header of an HTTP request, 

containing the URL to its User Agent Profile (UAProf). A UAProf file describes the capabilities of a 

mobile handset, including Vendor, Model, Screensize, Multimedia Capabilities, Character Set 

support, etc. However, there are several reasons why device recognition should not be entirely 

based on UAProfs: 

• Device manufacturers provide UAProfs voluntarily, and not all devices have a UAProf. 

• Some UAProfs are unavailable, due to outdated links, company shutdowns, etc. 

• Quality between UAProfs varies, since there is no industry-wide quality standard for data 

within each field of a profile. 
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Excerpt from UAProf for a Nokia mobile device: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<rdf:RDF> 

<!-- Start of uaprofile --> 

   <rdf:Description rdf:ID="Profile"> 

<!-- Start of Hardware component --> 

      <prf:component> 

         <rdf:Description rdf:ID="HardwarePlatform"> 

         [...] 

            <prf:ImageCapable>Yes</prf:ImageCapable> 

            <prf:InputCharSet> 

               <rdf:Bag> 

                  <rdf:li>ISO-8859-1</rdf:li> 

                  <rdf:li>ISO-10646-UCS-2</rdf:li> 

                  <rdf:li>US-ASCII</rdf:li> 

                  <rdf:li>UTF-8</rdf:li> 

               </rdf:Bag> 

            </prf:InputCharSet> 

            <prf:Keyboard>PhoneKeyPad</prf:Keyboard> 

            <prf:Model>5800 XpressMusic</prf:Model> 

            <prf:NumberOfSoftKeys>2</prf:NumberOfSoftKeys> 

            [...] 

            <prf:ScreenSize>360x640</prf:ScreenSize> 

            <prf:ScreenSizeChar>17x13</prf:ScreenSizeChar> 

            <prf:TextInputCapable>Yes</prf:TextInputCapable> 

            <prf:Vendor>Nokia</prf:Vendor> 

         </rdf:Description> 

<!-- End of Hardware component --> 

      </prf:component> 

[...] 

<!-- Start of BrowserUA component --> 

      <prf:component> 

         <rdf:Description rdf:ID="BrowserUA"> 

            <prf:BrowserName>Nokia</prf:BrowserName> 

            <prf:BrowserVersion>4.0</prf:BrowserVersion> 

            <prf:FramesCapable>Yes</prf:FramesCapable> 

            <prf:HtmlVersion>4.1</prf:HtmlVersion> 

            <prf:JavaAppletEnabled>No</prf:JavaAppletEnabled> 

            <prf:JavaScriptEnabled>Yes</prf:JavaScriptEnabled> 

            <prf:JavaScriptVersion>1.2</prf:JavaScriptVersion> 

            <prf:PreferenceForFrames>No</prf:PreferenceForFrames> 

            <prf:TablesCapable>Yes</prf:TablesCapable> 

            <prf:XhtmlVersion>2.0</prf:XhtmlVersion> 

            <prf:XhtmlModules> 

               <rdf:Bag> 

                  <rdf:li>XHTML1-struct</rdf:li> 

                  <rdf:li>xhtml-basic10</rdf:li> 

               </rdf:Bag> 

            </prf:XhtmlModules> 

         </rdf:Description> 

<!-- End of BrowserUA component --> 

      </prf:component> 

[...] 

   </rdf:Description> 

<!-- End of Uaprofile--> 

</rdf:RDF> 
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Wireless Universal Resource File (WURFL) 

The Wireless Universal Resource File (WURFL) is an open source community-driven project that 

provides a configuration file containing information about the features of mobile devices available 

on the market. The maintainer’s main goal for this file is to support maximum information for 

wireless devices. UAProf device profiles are one of the sources of device capability information 

for WURFL, which maps the UAProfile schema to its own with many other items and boolean 

fields divided into capability groups like device markup, multimedia capabilities and more. 

Devices are identified by the User-Agent header in web request and mapped to a profile in the 

resource file. 

Excerpt from WURFL capabilities for a Nokia mobile device: 

Group: product_info 
device_os: Symbian OS 
nokia_series: 60 

has_qwerty_keyboard: false 
pointing_method: touchscreen 
nokia_edition: 5 

uaprof: 
http://nds1.nds.nokia.com/uaprof/Nokia
5800d-1r100-3G.xml 

 
model_name: 5800 XpressMusic 
device_os_version: 9.4 

uaprof2: 
http://nds1.nds.nokia.com/uaprof/N
5800XpressMusicr100-2G.xml 

is_wireless_device: true 
brand_name: Nokia 
release_date: 2008_november 

Group: display 

physical_screen_height: 62 
columns: 17 
dual_orientation: true 

physical_screen_width: 53 
rows: 13 
max_image_width: 360 

resolution_height: 640 
resolution_width: 360 
max_image_height: 640 

 

 

Conclusion 

From the methods for mobile device recognition, WURFL turns out to be the most suitable, since 

it makes efficient use of all methods described above and combines it into a production ready 

resource that currently contains information of about 13.000 devices. 

It also offers a Java API to query information and follows the open-source spirit that also applies 

to Europeana. There is an easy way to integrate WURFL via Spring as a framework for 

dependency injection and aspect oriented programming, which is a constraint requirement for the 

development in EuropeanaConnect. As shown in the examples above, the WURFL-data is 

structured in a very convenient way that simplifies querying certain capabilities. 
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4.2 Implementation and integration of device integration 

Integration into Europeana framework 

A result from the first EuropeanaConnect Developer’s meeting (November, 2009, Vienna) was to 

aim for a tight integration with the original Europeana Portal on the top-most level. 

 

Figure 6. Simplified class diagram of controller package 

Our initial approach was the integration of the device in the AbstractPortalController of the 

Europeana portal (Figure 6). This class serves a base class for all controllers relevant for the 

mobile client and is called on each request (Siebinga, 2009). When the user connects to 

Europeana, the device recognition is initiated and returns a path to a template folder which 

contains the corresponding (mobile) templates. If no mobile device is recognized, this will point to 

the default template for non-mobile devices. 

During the evolvement of the Europeana framework the AbstractPortalController mentioned 

above became obsolete and was replaced by an even more spring-based approach. As a result 

of this development we had to rework the integration of our mobile device recognition 

accordingly. 

The new Spring based implementation allows the usage of so-called interceptors, which we 

decided to use for device recognition. Figure 7 shows a simplified sequence diagram of a typical 

spring-based web application request. 
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Figure 7. Web application request, simplified sequence diagram (diagram created by Platinum 

Solutions, 2008) 

The DispatcherServlet (A) accepts the request and uses the HandlerMapping (B) to select the 

configured Handler for the current Request. The returned Controller (C) handles the Request and 

returns a ModelAndView object that shall used to populate the page that shall be presented to the 

User. In the next step, the ViewResolver (D) returns the View (E) for this request that finally is 

rendered and transferred to the User. 

A common way to add new features to a web service in Spring’s AOP-approach is the use of 

interceptors. Spring Interceptors have the ability to pre-handle and post-handle web server 

requests. Figure 8 shows the same sequence diagram with an additional interceptor configured: 

A B C D E 
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Figure 8. Web application request with interceptor (extended version of diagram created by 

Platinum Solutions, 2008) 

By using an interceptor, it is possible to execute additional code before and after a specific step in 

the lifecycle of a request. Since it is only a simple configuration via XML, Interceptors can easily 

be added to a web-service and developed in a decoupled environment. The resulting code may 

be incorporated into other projects as well.  

For mobile device recognition in Europeana we need the ViewResolver (B) to determine the right 

view name for the page the user requested. After that is done, our Interceptor (A) post-handles 

the request, performs the device recognition and – if the page was requested from a mobile 

device – returns the appropriate “mobile” view instead of the regular view. 

Identifying desktop browsers 

A crucial aspect in mobile device recognition is the correct handling of desktop browsers. If 

requests are made from a desktop browser, the system needs to ensure that the correct view is 

presented to the user. By default, WURFL’s API assumes that every request is made by a mobile 

device. In order to support desktop browsers as well, WURFL supports the usage of so-called 

“Patch-files”, which is an extension of WURFL that lists all the most common user-agents of web 

browsers and sets a capability that allows the system to determine that a request was not made 

by a mobile phone.  

During the first tests of WURFL’s device detection it turned out that desktop browsers sometimes 

were identified wrong as mobile devices, especially when major browser updates were released 

(e.g. when the latest version number of Firefox 3.5.7 was switched to version 3.6. 

B A 
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http://tech.groups.yahoo.com/group/wmlprogramming/message/32120). Since the system should 

be able to deal with newly released desktop browser without immediate patching, we decided to 

integrate a simple desktop detection engine. This engine is a port of an extension to a php-based 

wurfl-project (Tera-WURFL) to the java programming language that makes it usable within the 

Europeana framework. The result is depicted in Figure 9. 

Implementation 

 

Figure 9. Classes in package de.offis.europeana.mobile 

All classes needed for the device recognition are located in a package called 

de.offis.europeana.mobile. This package makes intensive use of the WURFL API for java 

that is located in the net.sourceforge.wurfl package. 
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DeviceRecognition encapsulates the WURFL-based device recognition and allows the 

detection of a device and the appropriate template selection by calling 

getDeviceInformation(). 

An instance of DeviceRecognitionResult wraps the result of a device detection to an object 

that can be used as return-value. 

SimpleDesktopUserAgentMatcher and UserAgentUtils are used to enhance WURFL’s 

desktop browser detection. As described above, these classes try to identify desktop browsers 

with the help of the UserAgent and some helper methods. 

DeviceRecognitionInterceptor is meant to be used as an interceptor. It uses an instance of 

DeviceRecognition to modify the ViewName to a template that is best suited for a mobile 

device's capabilities. 

Configuration 

In order to make use of Wurlf’s Java-Api, a new dependency in Europeana’s portal.pom.xml 

maven configuration file needs to be added: 

        <dependency> 
            <groupId>net.sourceforge.wurfl</groupId> 
            <artifactId>wurfl</artifactId> 

            <version>1.0.1</version> 
        </dependency> 

This will download the desired artefact and provide the required libraries for build and deployment 

tasks. 

To add the interceptor, a modification of the Dispatcher Configuration is necessary: This 

configuration is usually found in /webapp/WEB-INF/dispatcher-servlet.xml. At first, the 

interceptor-bean has to be defined: 

<bean id="deviceRecognitionInterceptor" 

class="de.offis.europeana.mobile.DeviceRecognitionInterceptor" /> 

Afterwards, the bean can be added to the list of already configured interceptors: 

<bean 
class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotation
HandlerMapping"> 

  <property name="interceptors"> 
    <list> 
      <ref bean="localeChangeInterceptor"/> 

      <ref bean="formatInterceptor"/> 
      <ref bean="configInterceptor"/> 
      <ref bean="deviceRecognitionInterceptor"/> 

    </list> 
  </property> 
</bean> 

 

Finally, the mobile application context (see \portal-full\src\main\resources\) that 

initializes the WURFL service needs to be imported: 

<import resource="classpath:/mobile-application-context.xml"/> 
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The resulting interception of the request is depicted in Figure 31 (Appendix). 

Description of the device recognition process 

At first, the DeviceRecognitionInterceptor, derived from 

org.springframework.web.servlet.handler.HandlerInterceptorAdapter, calls the 

postHandle() method of its base class. The request is handled in 11 steps afterwards: 

1. Identify current View name and store it in the variable currentViewName. 

2. Check if the view name starts with “redirect”, which indicates a view that does not need to 

be modified to a mobile template. The Europeana framework introduced this mechanism 

to handle outgoing links and log where users left the Europeana portal. 

3. If the view fulfils the criteria above, the actual device recognition is performed and the 

result is stored in a variable. 

With the help of WURFL’s Java API, the device detection itself is very straightforward: 

At first, the system tries to identify the requesting browser by its User-Agent. If the 

SimpleDesktopDetection Engine is activated, the User-Agent is compared to a list of 

simple keywords and some regular expressions that match desktop browsers. If the 

request is not made by a desktop browser, the detection is handed over to wurfl’s 

detection logic. It returns a Device-object that is then used to access the device’s 

capabilities. By using a list of model names, mobile browsers, operating systems and 

version information, the system determines a display mode for the list of treasures (see 

chapter 4.3.1 for explanation of treasures). In addition to that, a folder that contains 

mobile templates is chosen. Afterwards, this information - together with some basic 

capabilities (e.g. screen size) - is used to create an instance of the 

DeviceRecognitionResult class that is then used as return-value. 

4. The new template name is requested from the DeviceRecognitionResult object. 

5. The new template name is set as view name in the interceptor. 

6. The information about the requesting device’s screen width is accessed. 

7. The information about the device’s screen width is added to the ModelAndView object. 

8. The information about the requesting device’s screen height is accessed. 

9. The information about the device’s screen height is added to the ModelAndView object. 

10. There are two ways to display the list of treasures on the front page. One of these has 

been picked according to the device’s capabilities. The Interceptor now requests this 

information. 

11. The information about the way the treasures shall be displayed is added to the 

ModelAndView object. 

The Interception has now modified the ModelAndView object that is returned for the current 

request and is complete. 

4.3 Mobile-optimized presentation 

One of the first choices to be made when designing mobile-optimized websites is the decision for 

a markup-language, being a constraint for what is technically feasible. 
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When dealing with transmission protocols and markup-languages for mobile devices, one is 

typically set to one of two options: WAP with WML as markup language, or HTTP with 

HTML/CSS as markup languages. 

WAP with WML 

With the release of version 1.1 of the WAP standard in 1999, mobile phone vendors started to 

add WAP-Browsers to the majority of their devices, while content providers started to offer mobile 

services like news headlines or sports results. Since data transmission via GPRS or HSCSD was 

not common, users of WAP-Browsers had to deal with low bandwidths and therefore only limited 

functionality with these mobile services. 

HTTP with HTML/CSS  

With the development of efficient layout engines, larger screen resolutions and higher data 

transfer rates in mobile networks, HTTP with HTML/CSS has taken the place of WAP for mobile 

internet portals. 

It is most likely that the majority of devices used to access EuropeanaConnect will be capable of 

displaying websites written in HTML via HTTP, allowing the user to access multimedia data like 

images, movie and sound-clips. Together with David Haskiya, Product Developer for Europeana, 

we decided to provide a mobile interface for modern smartphones with HTML-support, since this 

device class is becoming more and more important when it comes to mobile internet access 

(Haskiya, 2010). By adhering to established web standards (HTML/CSS) it is possible to create a 

user experience that is independent of the used operating system and mobile browser.  

The scope of mobile development for the Rhine release of Europeana was therefore focused on: 

A production ready mobile access to Europeana 

• That is platform independent; 

• automatic device recognition will result in loading a template for either a small or large 

mobile screen; 

• deprecating gracefully, so more advanced mobile devices can utilise and display 

JavaScript dependent functionalities which simpler devices will simply not display 

To avoid developing and maintaining two different versions for the mobile portal and the ordinary 

website, we decided that new features that are needed for the ordinary Europeana website as 

well should be integrated and made available there in the first place. We could then check 

whether or not changes for the mobile interface need to be done. 

4.3.1 Features 

Traditional user interfaces cannot be ported to mobile devices without adaption, so the interaction 

with the device has to be considered carefully. Therefore the usage of the mobile device with a 

touch or keypad interface is an overall goal for the mobile interface that needs to be considered in 

page layout decisions and icon designs. 

In order to create a mobile client, the set of functionalities of the Europeana website has to be 

compiled to a reasonable list of features for a mobile scenario. In conjunction with the result of 

our user requirements analysis, we decided to provide a system with the functionality depicted in 

the mock-ups and described in the following. 

Index page 
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Being the start point and first contact for most Europeana users, the index (or start) page needs 

to be both, appealing and easy to use. By offering a well-known layout and key elements, its 

design should allow the user to understand the provided services at first glance. 

• In order to be identifiable as part of the Europeana 

project, the logo is a key object on the index page that 

should be presented in the upper part. (A) 

• The language selection feature is a crucial feature for the 

mobile interface as well as for the desktop interface and 

should be easy to use and presented in way that 

reduces the number of clicks or interactions for non-

English users. It should therefore be shown when the 

site is loaded and should not require the user to scroll it 

into view. (B) 

o The auto selection of the interface language 

based on the user’s device settings was 

discussed, but descoped for the mobile interface. 

This feature should be integrated in the 

Europeana framework and implemented for the 

desktop client first. It will then most likely work for 

the mobile interface as well without much 

additional effort. 

• Simple search: As the most important access to the 

Europeana database, the search box is a key element 

on the index page. It should allow the user to perform 

simple queries. An extended version of the search functionality that allows advanced 

searches with additional parameters (e.g. operators like “and” or “not”) will be available 

with D3.4.3, the rich mobile client. (C) 

o The automatic suggestion of search keywords after the user has entered the first 

characters of his query has been discussed, but descoped for the mobile interface 

development. This feature is under discussion for the desktop interface and will 

be implemented there first. Depending on the implementation, it is probably easy 

to activate this feature for the mobile interface as well. 

• Treasures are famous and visually iconic objects presented as small image (e.g. Mona 

Lisa, Sunflowers) that directly link to big named works to endorse the Europeana brand. 

(D) 

The following features have been discussed, but descoped for the mobile interface: 

• Timeline browsing: The current implementation of the timeline was not usable on a mobile 

device. Due to its beta-state and unfinished reimplementation by the time of code-freeze 

for eMobile, the timeline browsing feature was disabled. (E) 

• New in Europeana: A list of recently added items is available on the desktop interface, but 

has been agreed as not appropriate in its current state for the mobile interface. (F) 

The index page covers UC 1.1 (Simple search). 

Search results 

Figure 10. Mock-up of the 

index page 

A 

B 

C 

D 

E 

F 
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The search results page is displayed after the user has entered his desired query keywords, and 

searching by the system is finished. The result page covers three use-cases, the “Visualization of 

Search Results in text-only List” (UC 2.1), “Visualization of Search Results in gallery list” (UC 2.2) 

and “Visualization of Search Results in Mixed list” (UC 2.3) 

An important requirement for the search result page is the optimal usage of the available screen 

size. In order to create a convenient user experience, the results should be presented in a way 

that does not need too much interaction to be viewed, avoiding zooming and scrolling as much as 

possible. 

The Europeana framework returns the results for a search query in chunks of 12 items. Therefore 

the user may need the possibility to switch between pages of several search results to review all 

items. Inspired by the visualization of common search engines, we decided to provide three views 

to display the search results that are shown in Figure 11. 

• Result visualization in mixed image/text perspective. This perspective is the default 

presentation; it combines a thumbnail-sized image preview with the most important item 

information. 

• Result visualization in text-only perspective: This perspective offers a light-weight way to 

review search results that is useful for lower bandwidth-conditions or older devices. 

• Result visualization in image-only gallery perspective: This perspective offers the most 

graphical representation with a list of images that is displayed in a lightbox way. 

 

Figure 11. Mock-up of search result visualization. 

From left to right: Mixed image/text, text-only and image-only perspective 

To switch between perspectives the system provides icons that are accessible easily in the upper 

part of the page. (A) 

From the search results page, the user can select one of the items or return to the index page to 

refine his query keywords. 

A 
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Object presentation 

The object presentation page is displayed after the user has 

selected to view an item from one of the search result perspectives 

described above. Alternatively, the object presentation is shown 

after the user has chosen one of the treasure items on the index 

page. 

In the upper part of the page, the title and an image are displayed. 

(A) Below, a selection of the item’s metadata (e.g. creator, year or 

description) is shown. (B) As in the desktop interface, a link to view 

the item in its original context is provided, opening a new browser 

window/tab, if possible. 

From the object representation, the user can always return to the 

search result perspective he came from, as well as back to the 

index page. 

Features available on all pages 

• Social bookmarking: Each page hosts a button that allows 

bookmarking and sharing the currently displayed page on 

the most popular social networks. 

• Link to static pages: Each page provides a link to this 

pages: 

o About us: Gives a brief outline on the idea, 

background and future of Europeana 

o Contacts: Offers a contact address as well as a feedback form for comments via 

email. 

o Terms and conditions: Gives information on copyrights, warranty and legal affairs. 

This page covers Use Case 3, “Visualize details of an item in the search results”. 

4.3.2 Device Groups 

Although there is a vast variety of browsers on mobile devices, luckily only a few rendering 

engines are used amongst them. Following the concept behind WURFL, the separation of 

capabilities into groups, we decided to create clusters of device classes. 

• As described in our User Requirements Analysis in the State of art chapter, the WebKit 

browser engine has the best market share predictions. Being one of the most advanced 

engines nowadays and used in some of the most popular devices (see Figure 13), we 

decided to implement an interface that makes use of some of the extensions the WebKit-

developers added to their engine. This interface is then shown on devices known to be 

using this specific engine. Fortunately, two of the most popular device platforms, iPhone 

and Android are using WebKit, allowing us to create an exciting Europeana user 

experience for the most common smartphones. 

This set of templates will be referred as “advanced templates” or “advanced interface” in 

the following. 

 

Figure 12. Mock-up of object 

presentation 

A 

B 
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• The second set of templates we decided to provide is designed to suit the capabilities of 

non-WebKit-based browser, offering a simpler layout that only makes use of the most 

basic browser features. 

This set of templates will be referred as “basic templates” or “basic interface” in the 

following. 

 

Figure 13. WebKit market share (Gartner, 2009) 

Since the Europeana development team has chosen the Freemarker template engine (a JAVA-

based engine focusing on the MVC software architecture: http://freemarker.sourceforge.net/) for 

creating and rendering the web views, the templates that are provided for the mobile interfaces 

are written using the same technique. 

To avoid developing and maintaining two different versions, code from the desktop templates is 

shared and reused whenever possible. To ease up maintenance, the directory structure and 

naming conventions for the mobile templates are inspired by the original templates. 

In the following chapters we will present each page of the two sets of templates, compare them 

and delve into the implementation of some highlights worth mentioning. 

4.4  Implementation of the advanced and basic interfaces 

This chapter shows the implementation result of the features identified in Chapter 4.3.1. The 

images below show a screenshot of each page in both templates, the advanced on the right and 

the basic interface on the left side. 
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4.4.1 Index page 

While the advanced interface makes use of some WebKit-browser extensions to mimic the look 

and feel of a native application (see Chapter 4.5.3 for more information) and provides a dynamic 

presentation of the treasures, the basic interface offers a more static view of the index page. 

However, the logo (A) and introductory statement (B) are available in both interfaces to support 

the Europeana brand and offer a guideline on what to expect from the Europeana project. 

The index page usually fits on a single screen and is shown entirely without the need for scrolling 

or zooming. Only on devices with a very small screen, the footer (containing the links to static 

pages and share-button) may be out of view (C). 

On the advanced template, the search box (D) already shows an example of a search keyword 

when the page is loaded. It is using a random entry from the list of popular searches in the 

Europeana database. 

Treasures 

The list of treasures (E) is presented differently, according to the capabilities of a user’s device. 

While the basic interface displays a static set of images, the advanced interface shows an 

interactive presentation. 

For the basic interface the number of shown images is calculated dynamically to ensure that 

there is only one “row” of images and no line break that would increase the amount of scrolling, 

needed to capture the entire page. Each thumbnail-sized treasure image is shown with a width of 

80 pixels and since the system “knows” the width of a mobile device, this number can be 

calculated easily. 

A 

B 

C 

E 

D 

D 

A 

B 

C 

E 

Figure 15. Basic Interface: Index page 

Figure 14. Advanced Interface: Index page 
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For the advanced templates we offer a more interactive presentation of the treasures. Based on a 

collection of JavaScript and CSS that showcases WebKit’s CSS animation effects 

(http://code.google.com/p/css-vfx/), we were able to create a gallery of images (see Figure 14 

(E)) that can be browsed via gestures on touch screen-based devices. 

To keep the loading time of the index page to a reasonable time, the system will load a maximum 

of 12 images from the carouselitem database table for the treasures presentation. 

4.4.2 Search results 

All three perspectives of the search results (Figures 16-21) offer icons in the upper area to switch 

to a different perspective (A). To return to the index page, the icon (on the advanced template) or 

Europeana logo (on the basic template) in the upper left can be used. (B) 

 

This perspective (Figures 16 and 17) is the default presentation; it combines a thumbnail-sized 

image preview with the most important item information. 

 

Figure 16. Basic Interface: Search results in 

mixed image/text perspective 

 

Figure 17. Adv. interface: Search results in 

mixed image/text perspective 

A 
B 

C 

D 

A 
B 

C 

D 
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This perspective (Figures 18 and 19) offers a light-weight way to review search results that is 

useful for lower bandwidth-conditions or older devices. 

 

Figure 18. Basic Interface: Search results in text-

only perspective 

 

Figure 19. Adv. Interface: Search results in 

text-only perspective 

 

Figure 20. Basic Interface: Search results in 

image-only gallery perspective 

 

Figure 21. Adv. Interface: Search results in 

image-only gallery perspective 
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The last perspective (Figures 20 and 21) offers the most “visual” presentation with a list of images 

that is displayed in a gallery-like way. 

For each result item, the type (image, text, sound or video) is indicated visually (C), either by a 

coloured border around the thumbnail-sized image preview or a border separating this image 

from the item information (title, creator, provider and year, if available) (D). 

To navigate between different pages of results, the buttons and links in the lower area on each 

page can be used. They are shown automatically in all perspectives, whenever more than 12 

items match the searched keywords (E). 

Thumbnails 

According to the thumbnail specification for 

the Europeana prototype, thumbnails for 

search result presentations are specified 

with a height of 110 pixels (Verleyen, 2009). 

In our first version, thumbnail height was 

reduced to 55 pixels to make optimal usage 

of the limited screen size. Since the system 

provides thumbnails in portrait and 

landscape orientation and we wanted to 

keep the aspect-ratio, the resulting preview 

images often were very small and left a 

large amount of unused space between 

image and text, as seen in Figure 22. 

In Figure 23, the result of our reworked thumbnail presentation is shown. By using standard CSS-

formatting on the client, the regular image is cropped to a 55x55 pixel image that shows a center 

region of the original image without increasing load on the server. This way, the available screen 

size is used in an efficient way, the result page shows a better symmetry in layout and the 

explorative character of Europeana is emphasized, encouraging users to browse the database. 

Figure 22. Initial presentation of thumbnails in 

search results 

Figure 23. Reworked thumbnail visualization 
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4.4.3 Object presentation 

To view the object presentation of an item, the user 

needs to click an item from the search results or select 

an item from the list of treasures on the index page. 

The upper area offers icons to return to the search 

results or the index page (A). Below, a small icon next 

to the title indicates the item type (B). By using the 

links provided in the bottom area (Figure 26), the item 

can be viewed in its original context (A) or the user can 

switch to the next/previous item in the result list (B). 

4.4.4 Static page example: Contacts 

As an example for static page content, the contacts page is depicted in Figure 27 and Figure 28. 

In order to create this content, we took the “desktop” content for this page and simply changed 

some of the css-styling to better suit on a mobile device. 

 

Figure 24. Basic Interface: Object 

presentation 

 

Figure 25. Adv. Interface: Object presentation 

Figure 26. Adv. Interface: Bottom area 

navigation 

A 

B 

A 

B 

A 
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4.5 Implementation details 

In the following, we will describe the implementation specifics of the mobile Europeana client. 

4.5.1 Directory structure 

The diagram below shows the directory structure we used to develop the mobile interface. It is 

located in the \portal-full\src\main\webapp-directory. 

├─── mobile 
│    ├─── css 
│    ├─── images 
│    ├─── iwebkit 
│    │    ├─── css 
│    │    ├─── images 
│    │    ├─── javascript 
│    │    └─── thumbs 
│    ├─── js 
│    └─── zflow 
└─── WEB-INF 
     └─── templates 
          └─── mobile 
               ├─── generic 
               └─── iphone 

 

Figure 27. Basic Interface: Contact page 

 

Figure 28. Adv. Interface: Contact page 
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• \mobile\css\ contains Stylesheets for both mobile templates 

• \mobile\images\ contains images, logos and icons specially created for the eMobile 

• \mobile\iwebkit\ and subfolders contain files from a 3rd party toolkit used for the 

layout of the advanced interface 

• \mobile\js\ contains javascript-files 

• \mobile\zflow\ contains the files from a 3rd party toolkit used for the treasure 

presentation in the advanced index page (see Chapter 4.4.1) 

The directory structure and file content of the WEB-INF\templates-folder is shown below. 

WEB-INF 

└─── mobile 
    │   inc_flow.ftl 
    │   inc_footer.ftl 
    │   inc_header.ftl 
    │   inc_macros.ftl 
    │   inc_result_table_brief.ftl 
    │   inc_result_table_full.ftl 
    │    
    ├─── generic 
    │       brief-doc-window.ftl 
    │       contact.ftl 
    │       full-doc.ftl 
    │       index_orig.ftl 
    │       static-page.ftl 
    │        
    └─── iphone 
            brief-doc-window.ftl 
            contact.ftl 

            full-doc.ftl 
            inc_header.ftl 
            index_orig.ftl 

            static-page.ftl 

To ease up maintenance, code between the advanced and basic - and even the desktop - 

interface is shared, whenever possible. A good example for code sharing between both mobile 

interfaces and the desktop interface is the language selection: We have been able to completely 

reuse the code for this feature that was already available as part of the desktop interface. All that 

was needed was the inclusion of the language_select template, the related JavaScript code 

and some additional styling information. 

Freemarker-Files, located directly in the mobile directory are implemented to work as includable-

files, allowing to be used from any other template: 

• inc_flow contains the code to create the dynamic treasure-presentation in the advanced 

index page (see Chapter 4.4.1) 

• inc_footer is included in every page template to show links to the static pages and the 

bookmark-button 
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• inc_header provides the basic structure of a webpage (opening tags, meta information, 

stylesheet-definitions) 

• inc_macros is used intensively in most of our templates. This file contains helper 

methods and other useful functions. 

• inc_result_table_brief contains code to create the search result page’s three 

perspectives. 

• inc_result_table_full is used to render the content of the object representation 

page 

The names of the files in the iphone and generic-folder are identical. Each file represents one 

of the pages. While generic is used for the basic interface, iphone is used for the advanced 

interface. The file-naming follows the conventions established by the desktop interface: 

• brief-doc-window is used for the search result page 

• contact is used for the contact page 

• full-doc is the template for the object presentation page 

• index_orig is used for the index page 

• static-page is the template for all other static pages 

The folder for the advanced interface contains an additional inc_header file, since that 

interface requires more logic and definitions in the header of each page. 

4.5.2 Mobile meta tags 

Mobile web content is usually identified by using a website’s DOCTYPE definition. If the 

DOCTYPE states that a document is XHTML-MP or WML, then content is declared mobile-

optimized, by definition. However, today’s advanced mobile devices and modern smartphones 

are capable of rendering “normal” desktop content, most of them with almost full JavaScript and 

AJAX support. A lightweight and responsive full-HTML mobile web experience provides the best 

user experience across a mobile network and on the smartphone browser. Since a smartphone-

optimized mobile web document uses the full tag set of HTML, its DOCTYPE is no longer the 

right criteria to use to decide whether the document is optimized for mobile devices. 

With the help of mobile meta tags, documents are identified as mobile optimized, therefore we 

make use of the following tags: 

The HandheldFriendly meta tag 

<meta name="HandheldFriendly" content="true" /> 

Originally developed for AvantGo browsers on Palm devices, this tag is today interpreted by most 

mobile browsers as a directive to display a document without scaling. 

The MobileOptimized meta tag 

<meta name="MobileOptimized" content="[width in pixels]" /> 

The MobileOptimized tag was developed by Microsoft to enable developers to enhance their 

content for Internet Explorer Mobile. The presence of this tag prevents the browser from 
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modifying the layout, assuming a non-optimized page. Instead, this tag forces a single-column 

layout with the specified width (Microsoft, 2006). 

This tag is also used by other mobile browsers to force a single-column layout, as well as mobile 

search engines to identify mobile-optimized web pages. 

The Viewport meta tag 

<meta name="viewport" content="width=[width in pixels], height=[height in 

pixels], user-scalable=no, initial-scale=1.0" /> 

The Viewport tag controls the dimensions and scaling of the browser viewport window. It is widely 

supported by WebKit-based mobile browsers, including but not limited to Safari Mobile on the 

iPhone, the Android browser, webOS browser in Palm’s newer devices (Pre and Pixi) and 

Blackberry browsers. The presence of the Viewport tag indicates that the document is optimized 

for mobile devices. The example shows the Viewport directives we used: width and height of the 

device’s screen; to disable zooming, user-scalable is set to no, together with an initial-

scale of 1.0 (a non-zoomed document). 

To set a device’s specific screen size in one of the latter two meta tags, the system uses the 

result of the device recognition that is injected into the ModelAndView object after the requesting 

device has been identified as mobile device (see Figure 31, Appendix for details). 

4.5.3 Web apps 

We based the design of the advanced interface on the look and feel of a native application on the 

iPhone, a so-called “web app”. This presentation looks particularly well on the iPhone, but still 

very good on other WebKit-based mobile browsers of other devices. 

There are a few web-app frameworks available as open-source software, e.g. iUI (iPhone User 

Interface Framework), iWebKit or UiUIKit (Universal iPhone UI Kit) (for a more complete list, see: 

http://komparable.com/133/mobile-frameworks-for-iPhone-WebApps). By using a combination of 

standard html markup, CSS, JavaScript and/or Ajax their goal is to mimic the appearance of a 

native phone application. Unfortunately, most of these projects seem to be inactive and 

unmaintained. Therefore, we decided to use the iWebKit-framework (http://www.iwebkit.info/), 

being the most active project that is still maintained and supported by the community.  

For iPhone users, the iWebKit framework also offers an interesting “full screen” mode. By adding 

a new meta tag to the head section of each document, the mobile browser hides the task and 

navigation bars, like a native application does: 

<meta name="apple-mobileweb-app-capable" content="yes" /> 

There are two more tags that may be used to support this behavior: 

<link rel="apple-touch-icon" href="image.png" /> 

<link rel="apple-touch-startup-image" href="startup.png" /> 

These two items are interpreted, when a webpage is added as a bookmark to the homescreen of 

an iPhone. It will modify the icon for the bookmark and show a loading image while the phone is 

loading the index page. 

As shown in Chapter 4.5.1, the files of the iWebKit framework are located in the directory 

\portal-full\src\main\webapp\mobile\iwebkit\. Since we needed to add a 
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Europeana-specific stylesheet, we created an additional file, iwebkit_addon.css, where we 

added new styling declarations as well as overrides for existing styling information. This way, the 

original files may always be updated with the latest release without the need for additional 

patching when a newer version is released. 

4.5.4 Semantic Layer integration 

According to the Description of Work for Task 3.4., the mobile client could make use of the 

Semantic Layer developed in EuropeanaConnect WP1. In a meeting with the developers of the 

Semantic Layer it turned out that this feature will be integrated in a transparent way (Hesselmann, 

2010): From a user point of view, the original search functionality of the Europeana portal can still 

be used. Synonyms will be automatically created in the background by the semantic layer and will 

produce other or more search results. 

According to this information, there is currently no need to integrate more sophisticated query 

mechanisms, e. g. SPARQL, to access the semantic layer. It will most likely be possible to utilize 

the functions of the semantic layer using the SOLR-based search functions of Europeana. 

4.5.5 Testing 

Unit Tests 

The Unit tests we provided to ensure a proper testability of the code are located in the folder 

\portal-full\src\test\java\de\offis\europeana\mobile\. The file 

DeviceRecognitionTest.java contains three jUnit tests to check the correct detection of 

mobile devices. Besides, we added three tests to ensure the right identification of desktop 

browsers. 

Simulators 

Although a physical device is the best choice when it comes to testing, often a simulator is 

sufficient to do a quick test of a new feature. The list below covers a wide range of mobile devices 

and platforms. All simulators are at least available for Microsoft Windows, most of them also for 

Mac and Linux operating systems. However, the official iPhone simulator is available only for 

MacOS. For other platforms, Apple’s Safari Browser offers a developer mode that can be used for 

simulating an iPhone-like device. 

• Android Emulator  

http://developer.android.com/guide/developing/tools/emulator.html  

• Opera Mobile emulator 

http://www.opera.com/developer/tools/  

• Symbian, S60 platform  

http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-

af0631419e9c/S60_All_in_One_SDKs.html  

• Palm webOS SDK 

http://developer.palm.com/index.php?option=com_content&view=article&layout=page&id

=1788&Itemid=21  

• Blackberry simulators 

http://na.blackberry.com/eng/developers/resources/simulators.jsp  
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• Windows Mobile 

o Windows Mobile 5.0 Smartphone Emulator Images  

http://www.microsoft.com/downloads/details.aspx?familyid=52FED581-8F8D-

4C46-9966-4832098191B7&displaylang=en 

o Windows Mobile 6.1.4 Emulator Images  

http://www.microsoft.com/downloads/details.aspx?FamilyID=1a7a6b52-f89e-

4354-84ce-5d19c204498a&displaylang=en  

 

Getting Network Access on the Windows Mobile Emulator: 

http://betterthaneveryone.com/archive/2008/08/31/getting-network-access-on-the-

windows-mobile-emulator.aspx 

4.5.6 Code repository 

The entire code and all files mentioned throughout this document have been committed to the 

central Europeana code repository. It is accessible either via subversion (see the Europeana 

Development Guide for details, http://europeanalabs.eu/wiki/DevelopmentGuide) or browseable 

online: http://europeanalabs.eu/browser/europeana/trunk. 

The integration of the mobile client into the Europeana Framework, Subtask 3.4.5, has been 

taken into account from the beginning of development: 

The developed code was committed to the “contribute” directory of the central Europeana code 

repository from where it has been picked up and integrated into portal-lite by the core 

development team. (http://europeanalabs.eu/ticket/607). After some additional testing and bug 

fixing, this code was finally migrated to portal-full. (http://europeanalabs.eu/changeset/2698) 

4.5.7 3rd party libraries 

eMobile makes use of the following 3rd party libraries and frameworks: 

• WURFL device library and Java API. http://wurfl.sourceforge.net/ 

• SimpleDesktop Matching Engine from Tera-WURFL. http://www.tera-wurfl.com/ 

• iWebKit webapp framework. http://www.iwebkit.info/ 

• css-vfx: JavaScript and css effects library. http://code.google.com/p/css-vfx/ 

• Freemarker template engine. http://freemarker.sourceforge.net/ 

5 Conclusion 

In this document, we have presented the design and implementation of a middleware and web 

server for accessing Europeana. 

We started with a presentation of the underlying design process and a summary of the results 

from our user requirements analysis. We then presented concepts, a solution for mobile device 

recognition and its integration into the Europeana Framework. Afterwards, we created mockups 

for a mobile presentation of Europeana and our implementation of two interfaces, one basic 

interface and a more advanced interface for modern devices. In the following, we then discussed 

some of the details and design decisions worth mentioning from the implementation phase. 
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The mobile client we created has already been integrated into the Europeana portal and is 

supposed to go live with the Rhine release. It offers an appealing interface adapted to the needs 

of users in a mobile environment. 

The side-by-side comparison of the index page shows the advantages the mobile interface 

(Figure 29) has over the desktop interface (Figure 30): Without optimization to the available 

screen size, the content of the page is hard to capture and it needs extensive zooming and 

scrolling to navigate between all elements (e.g. language selection and search box). By hiding 

the address bar when it is not used, the small screen can be used in an efficient way. 

Changes in production environment: After we handed our code over to the Europeana Office, 

some minor changes have been applied to the mobile client. Due to the fact that this Deliverable 

covers the design of our interface, the actual mobile layout presented on the Europeana portal 

now differs slightly from the screenshots in this document. For example, the list of treasures, as 

described in chapter 4.4.1 has been de-scoped while the language selection in the advanced 

interface is now shown above the logo. However, a test-server – with a limited demo dataset – 

that may be used for comparison is available as described in the appendix. 

5.1 Suggestions 

Website statistics with Google analytics: The Europeana portal uses Google Analytics to track 

users and gain website statistics. Google analytics can be added easily, by adding a small bit of 

Javascript to each page. However, the lack of JavaScript on older devices is an important aspect 

that needs to be considered for statistic on mobile pages. To solve this problem, Google created 

a special implementation for statistics, “Google Analytics for Mobile” 

(http://code.google.com/intl/en/mobile/analytics/) that may be implemented server-sided. 

Figure 29. The index page displayed on an 

iPhone 

Figure 30. The index page adapted for a 

mobile device 
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Validation errors: The mobile interface is valid XHTML 1.0 Transitional code. However, some 

tests, e.g. the mobiReady test (http://ready.mobi/) show an incorrect score because of errors in 

the used W3C validator. The validation error is caused by the social bookmarking button that is 

perfectly valid XHTML 1.0 Transitional, but is not validated correctly due to a limitation of the 

W3C test (http://www.addthis.com/help/client-api#valid-xhtml). As soon as the button is disabled, 

both tests pass and the mobile readiness score reaches 4-5 (with 5 being maximum). 

Memory Usage for WURFL’s device database: Since the library constantly grows – as new 

devices are added to it – device detection may become slow and more time consuming. To avoid 

this issue, the usage of the WURFL customizer tool provided by the Tera-WURFL project 

(http://www.tera-wurfl.com/wiki/index.php/WURFL_Customizer) may be considered: This small 

utility allows reducing the size of the xml file that contains all devices information, by removing all 

capabilities that are not needed. 

WURFL database updates: It is recommended to regularly update the WURFL library to support 

future devices. Updates are provided on a monthly base by the maintainers (currently available at 

http://sourceforge.net/projects/wurfl/files/WURFL/latest/wurfl-latest.zip/download). The official 

mailing list (http://tech.groups.yahoo.com/group/wmlprogramming/) is also a useful resource for 

the latest news in development of the WURFL API as well as information on new mobile devices 

and how to support them best. 

Thumbnail generation: In its current implementation the thumbnails for the mobile interface are 

cropped to a smaller size via CSS on the client-side, as described in chapter 4.4.2. To further 

reduce loading times and transferred data, an extension of the Europeana thumbnail cache – that 

then also serves thumbnails already suited for mobile devices – could be implemented. 

5.2 Next steps 

After designing and implementing the mobile Europeana Clients, the next step is the evaluation of 

the mobile clients according to the defined requirements in Task 3.4.4. The goal of the evaluation 

is to investigate if the applications developed in this task satisfy the requirements which have 

been identified in task 3.4.1. Additionally, the requirements themselves will be subject to 

evaluation with the goal of revealing potential future improvements and extensions. 

When the Europeana Rhine release goes live, the Europeana Office will gain interesting statistics 

on the usage of the mobile interface. This information will be a useful resource that could - 

together with user feedback and the results of our evaluation - form the requirements for future 

developments of the mobile client and establish the mobile client as an important access channel 

for Europeana. 
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Description of software developed for Europeana within 

EuropeanaConnect 

This software demonstrates the features of the web server based mobile access to Europeana. 

Using this software, users are able to access the contents of Europeana from their mobile 

devices. It contains the following features: 

• Device Recognition. The capabilities of the accessing mobile devices are automatically 

recognized by the Europeana web server. The user is served a mobile web site, which is 

dynamically optimized to the capabilities of his / her smartphone. 

• Web based application. The mobile client is realized as a web based application, and is 

thus adaptable to a multitude of available mobile devices. It is accessible via the mobile 

web using ordinary mobile browsers.  

• Basic search functionality. The software offers users the possibility to search the 

contents in Europeana by entering search strings, comparable to the normal Europeana 

web site. 

• Gesture based browsing. Users with appropriate mobile devices (iOS, Android) are able 

to search through popular Europeana “treasures” using a gestural carousel browser on 

the home screen. 

• Three levels of detail. Search results are presented in one of three views: A gallery view, 

a text-only view, and a mixed mode consisting of thumbnails and text. Users can thus 

adjust the result browser to their current usage scenario. 

• Detailed item view. Users can select items from the carousel browser or the search 

results screens in order to view them at full detail, including a bigger thumbnail, as well as 

a detailed description of the selected item. 

 

Link to software http://134.106.50.15:81/portal/  

Development environment IntelliJ IDEA 

Programming language used Java 6.0, JavaScript 

Application server used Jetty 6.1.X 

Database requirements Postgres 8.x 

Operating system requirements Windows XP or higher or Debian Linux 

Port requirements / default ports used HTTP on Port 81 

Interface Web service over HTTP 

Licensing conditions EUPL, GPL, BSD 
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Acronyms 

Acronym Meaning 

AJAX Asynchronous JavaScript and XML 

AOP Aspect-Oriented Programming 

API Application Programming Interface 

CSS Cascading Style Sheets 

GPRS General Packet Radio Service 

HCD Human-Centred Design 

HSCSD High-Speed Circuit-Switched Data 

HTML HyperText Markup Language 

HTTP HyperText Transfer Protocol 

ISO International Organization for Standardization 

MVC Model-View-Controller 

UAProf User Agent Profile 

URL Uniform Resource Locator 

W3C World Wide Web Consortium 

WAP Wireless Application Protocol 

WML Wireless Markup Language 

WURFL Wireless Universal Resource FiLe 

WWW World Wide Web 

XML Extensible Markup Language 
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Figure 31. Sequence diagram of Interceptor for mobile device detection (continued) 

 


